Теорема Ферма  

Теорема Ферма

Теорема. Нехай функція визначена на інтервалі і в деякій точці має найбільше або найменше значення. Тоді, якщо в цій точці існує похідна , то вона рівна нулю, тобто .

Доведення. Нехай для визначеності функція функція в точці приймає найбільше значення, тобто для всіх .

За означенням похідної

,

причому ця границя не залежить від того, як буде прямувати до . Якщо і , то , а тому

.

Якщо ж і , то .

Отже,

.

Звідси випливає, що .

Аналогічно розглядається випадок, коли в точці функція досягає найменшого значення.

Обертання в нуль похідної в точці , означає, що дотична до графіка функції в точці з абсцисою паралельна вісі (рис. 22).

Зауваження. Теорема Ферма справедлива, коли , і неправильна, коли замість інтервалу розглядати відрізок . Наприклад, функція на відрізку приймає найменше значення в точці , а найбільше в точці . Проте в жодній із цих точок похідна в нуль не обертається.


8698922525399797.html
8698980505380544.html

8698922525399797.html
8698980505380544.html
    PR.RU™